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In the space–time conservation element and solution element (CE/SE) method, the
independent marching variables used comprise not only the mesh values of the phys-
ical dependent variables but also, in contrast to a typical numerical method, the
mesh values of the spatial derivatives of these physical variables. The use of the
extra marching variables results from the need to construct the two-level, explicit
and nondissipative schemes which are at the core of the CE/SE development. It also
results from the need to minimize the stencil while maintaining accuracy. In this
paper, using the 1Da–µ scheme as an example, the effect of this added complication
on consistency, accuracy, and operation count is assessed. As part of this effort, an
equivalent yet more efficient form of thea–µ scheme in which the independent
marching variables are the local fluxes tied to each mesh point is introduced. Also,
the intriguing relations that exist among thea–µ. Leapfrog, and DuFort–Frankel
schemes are further explored. In addition, the redundancy of the Leapfrog, DuFort–
Frankel, and Lax schemes and the remedy for this redundancy are discussed. This
paper is concluded with the construction and evaluation of a CE/SE solver for the
inviscid Burgers equation. c© 2000 Academic Press

Key Words:space–time; flux conservation; conservation element; solution element;
shocks.

1. INTRODUCTION

The space–time conservation element and solution element (CE/SE) method is a new
high-resolution, genuinely multidimensional, and unstructured-mesh compatible numerical
method for solving conservation laws [1–21]. Since its inception in 1991 [1], the CE/SE
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method has been used to obtain highly accurate numerical solutions for 1D, 2D, and 3D invis-
cid and viscous flow problems involving shocks, contact discontinuities, vortices, acoustic
waves, boundary layers, chemical reactions, and hydraulic jump. Without the aid of precon-
ditioning or other special techniques, the method can be applied to both steady and unsteady
flows with speeds ranging from Mach number= 0.00288 to 10 [16].

Development of the CE/SE method is motivated by a desire to build a general and co-
herent numerical framework that avoids the limitations and complications of the traditional
methods. As a result, the CE/SE method was built from ground zero using a set of design
principles [2, 3] that facilitate simplicity, robustness, and accuracy. They include: (i) en-
forcing both local and global flux conservation in space and time, with flux evaluation at an
interface being an integral part of the solution procedure and requiring no interpolation or
extrapolation; (ii) unifying space and time and treating them as a single entity; (iii) requiring
that a numerical scheme be built from a nondissipative core scheme such that the numerical
dissipation can be effectively controlled and, as a result, will not overwhelm the physi-
cal dissipation; (iv) considering the mesh values of the physical dependent variables and
their spatial derivatives as independent marching variables, to be solved for simultaneously;
(v) defining conservation elements and solution elements such that the simplest stencil will
result; (vi) excluding the use of characteristics-based techniques (such as Riemann solvers);
and (vii) avoiding the use of ad hoc techniques as much as possible.

Note that thea–µ scheme and thea–ε scheme, which are, respectively, the CE/SE solvers
of a convection–diffusion equation (see Eq. (2.1)) and its pure convection version, were
described in [2] along with their Euler and Navier–Stokes extensions. However, because
of the need to minimize the length of the manuscript, several important topics such as
the consistency, accuracy, and operation count of thea–µ scheme were not addressed in
Chang [2]. As will be shown, because of the fact that the mesh values of both the dependent
variables and its spatial derivatives are treated as independent marching variables in the
CE/SE development, the concept of consistency for thea–µ scheme is by no means trivial.
In addition to addressing several topics left untreated in Chang [2], in this paper we will
describe an equivalent yet more efficient form of thea–µ scheme in which the independent
marching variables are the local fluxes tied to each mesh point. Furthermore, a CE/SE solver
for the inviscid Burgers equation will also be introduced and evaluated.

As a side trip, the intriguing relations [2] that exist among thea–µ, Leapfrog, and DuFort–
Frankel schemes will be further explored in this paper. In addition, the redundancy of the
classical Leapfrog, DuFort–Frankel, and Lax schemes, and the remedy to this redundancy,
will also be discussed.

2. NUMERICAL SCHEMES

In this section, we shall (i) briefly review the 1D CE/SEa–µ scheme described in [2] and
then recast it in a numerically more efficient form; and (ii) describe a new CE/SE scheme
for solving the inviscid Burgers equation.

2.1. The a–µ Scheme

Consider a dimensionless form of the 1-D convection–diffusion equation, i.e.,

∂u

∂t
+ a

∂u

∂x
− µ∂

2u

∂x2
= 0, (2.1)
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wherea andµ (≥0) are constants. Letx1 = x andx2 = t be considered the coordinates of
a two-dimensional Euclidean spaceE2. By using Gauss’ divergence theorem in the space–
timeE2, it can be shown that Eq. (2.1) is the differential form of the integral conservation law∮

S(V)
h · ds= 0. (2.2)

Here (i) S(V) is the boundary of an arbitrary space–time regionV in E2, (ii) h = (au−
µ∂u/∂x, u) is a current density vector inE2, and (iii)ds= dσn with dσ andn, respectively,
is the area and the outward unit normal of a surface element onS(V). Note that (i)h · ds
is the space–time flux ofh leaving the regionV through the surface elementds, and (ii) all
mathematical operations can be carried out as thoughE2 were an ordinary two-dimensional
Euclidean space.

Let9 denote the set of all mesh points inE2 (dots in Fig. 1a). There is a solution element
(SE) associated with each( j, n) ∈ 9. Let the solution element SE( j, n) be theinterior of
thespace–timeregion bounded by a dashed curve depicted in Fig. 1b. It includes a horizontal
line segment, a vertical line segment, and their immediate neighborhood.

For any(x, t) ∈ SE( j, n), u(x, t) and h(x, t) are approximated byu∗(x, t; j, n) and
h∗(x, t; j, n), respectively. Here

u∗(x, t; j, n) = un
j + (ux)

n
j (x − xj )+ (ut )

n
j (t − tn) (2.3)

and

h∗(x, t; j, n) = (au∗(x, t; j, n)− µ∂u∗(x, t; j, n)/∂x, u∗(x, t; j, n)). (2.4)

FIG. 1. The space–time mesh, CEs, and SEs used in the CE/SE method. (a) The staggered space–time mesh.
(b) SE (j, n). (c) CE−( j, n). (d) CE+( j, n). (e) CE(j, n) at an interior mesh point (j, n).
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Note that here that (i)un
j , (ux)

n
j , and(ut )

n
j are constants in SE( j, n), (ii) (xj , tn) are the

coordinates of the mesh point( j, n), and (iii) Eq. (2.4) is the numerical analogue of the
definitionh = (au− µ∂u/∂x, u).

Let u = u∗(x, t; j, n) satisfy Eq. (2.1) (i.e.,∇ · h∗ = 0) within SE( j, n). Then one has

(ut )
n
j = −a(ux)

n
j . (2.5)

Note that because Eq. (2.3) is a first-order Taylor’s expansion, the diffusion term in Eq. (2.1)
has no counterpart in Eq. (2.5). As a result, the diffusion term has no impact on how
u∗(x, t; j, n)varies with timewithinSE( j, n). However, as will be shown shortly, through its
role in the numerical analogue of Eq. (2.2), it does influence time-dependence of numerical
solutions. Moreover, the legitimacy of Eq. (2.5) is supported by the results of stability and
consistency study of thea–µ scheme given in [1, 2] and Section 3 of this paper.

Combining Eqs. (2.3) and (2.5), one has

u∗(x, t; j, n) = un
j + (ux)

n
j

[
(x − xj )− a(t − tn)

]
, (x, t) ∈ SE( j, n). (2.6)

Thus,un
j and(ux)

n
j are the only independent marching variables associated with the mesh

point ( j, n).
Let E2 be divided into nonoverlapping rectangular regions (see Fig. 1a) referred to as

conservation elements (CEs). As depicted in Figs. 1c and 1d, two nonoverlapping CEs, i.e.,
CE−( j, n) and CE+( j, n), are associated with each interior mesh point( j, n) ∈ 9. On the
other hand, a single CE, i.e., CE−( j, n) (CE+( j, n)), is associated with a mesh point( j, n) ∈
9 on the right (left) spatial boundary. The conservation element CE( j, n) (see Fig. 1e), which
will be used only in Section 2.2, is the union of CE−( j, n) and CE+( j, n). Obviously, the
boundary of CE−( j, n) is formed by subsets of SE( j, n) and SE( j − 1/2, n− 1/2), while
that of CE+( j, n) is formed by subsets of SE( j, n) and SE( j + 1/2, n− 1/2). By assuming∮

S(V)
h∗ · ds= 0 (2.7)

with V = CE+( j, n) andV = CE−( j, n), respectively, one obtains two conservation con-
ditions at each mesh point( j, n) ∈ 9. Using these two conditions along with Eqs. (2.4)
and (2.6), the two independent marching variablesun

j and(ux)
n
j can be expressed as the

functions of the independent marching variables at the mesh points( j ± 1/2, n− 1/2)
[2, pp. 299–300]; i.e.,

un
j =

1

2

{
(1+ ν)un−1/2

j−1/2+ (1− ν)un−1/2
j+1/2+ (1− ν2− ξ)

[
(u+x )

n−1/2
j−1/2− (u+x )n−1/2

j+1/2

]}
(2.8)

and

(u+x )
n
j =

−1

2(1− ν2+ ξ)
{
(1− ν2)

(
un−1/2

j−1/2 − un−1/2
j+1/2

)
+ (1− ν2− ξ)

[
(1− ν)(u+x )n−1/2

j−1/2 + (1+ ν)(u+x )n−1/2
j+1/2

]}
. (2.9)

Here

1− ν2+ ξ 6= 0 (2.10)
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and

ν
def= a1t

1x
, ξ

def= 4µ1t

(1x)2
and (u+x )

n
j

def= 1x

4
(ux)

n
j . (2.11)

Thea–µ scheme is formed by Eqs. (2.8) and (2.9). Note that it is explained in [2] that the
local conservation conditions used to construct thea–µ scheme lead to a global conservation
relation (i.e., the total flux leaving the boundary of any space–time region that is the union
of any combination of CEs will also vanish).

Also note that the expression on the right side of Eq. (2.8) can be written as a linear com-
bination of the four marching variablesun−1/2

j±1/2 and(u+x )
n−1/2
j±1/2. Each combination coefficient

is a constant which can be evaluated once and used repeatedly in the marching procedure.
Because a pair of these coefficients differ only in sign, one concludes that it requires three
multiplications, two additions, and one subtraction to evaluateun

j . Applying the same ar-
gument to Eq. (2.9), one concludes that it requires six multiplications, four additions, and
two subtractions to evaluate bothun

j and(u+x )
n
j for each( j, n) ∈ 9.

In [2], it is shown that Eqs. (2.8) and (2.9) can be derived from a perspective different
from that shown above. In the following, an equivalent but numerically more efficient and
physically more revealing form of thea–µ scheme will be derived from the new perspective.
Note that this “new” form is really the original form of thea–µ scheme given in [1].

In the new derivation, the locations of mesh points (dots in Fig. 2a) are identical to those
shown in Fig. 1a. However, the solution element (denoted by SE′( j, n)) associated with
any ( j, n) ∈ 9 is defined to be theinterior of a rhombus centered at( j, n) (see Fig. 2b).
On the other hand, the conservation element (denoted by CE′( j, n)) associated with( j, n)
is defined to be the union of SE′( j, n) and its boundary (see Fig. 2c). Note that a side of
the rhombus is in generalnot a characteristic line of Eq. (2.1). It is simply a line segment
joining two points of intersection (not marked by dots) of horizontal and vertical mesh
lines. For any(x, t) ∈ SE′( j, n), u(x, t) andh(x, t), respectively, again are approximated
by u∗(x, t; j, n) andh∗(x, t; j, n), which are defined by Eqs. (2.3) and (2.4) respectively.

Furthermore, Eq. (2.2) is approximated by∮
S(V∗)

h∗ · ds= 0, (2.12)

whereV∗ is the union of any combination of CEs. Because an SE is the interior of a CE,
h∗ is not defined onS(V∗), the boundary ofV∗. As a result, the above surface integration
is to be carried out over a surface that is in the interior ofV∗ and immediately adjacent to
S(V∗). A necessary condition of Eq. (2.12) is that, for any( j, n),∮

S(CE′( j,n))
h∗ · ds= 0; (2.13)

i.e., the total flux leaving any conservation element is zero. It is shown in [2] that, given
Eqs. (2.3) and (2.4), Eq. (2.13) is equivalent to Eq. (2.5). As a result, Eqs. (2.5) and (2.6)
can be assumed in the following derivation.

By applying Eq. (2.12) separately to two neighboring CEs and then to their union, it
is seen that Eq. (2.12) also requires that, at the interface separating any two neighboring
CEs, the total flux entering the interface from one side must be equal to that leaving it from
another side (Note: As a result of the definitions of the current CEs and SEs,h∗ at the two
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FIG. 2. The alternative SEs and CEs. (a) The relative positions of SEs and CEs. (b) SE′( j, n). (c) CE′( j, n).
(d) Interface flux conservation relations.

sides of the interface are evaluated using information from two different SEs.) Obviously,
the local flux conservation conditions at all interfaces and within all CEs (i.e., Eq. (2.13))
are equivalent to the global conservation condition Eq. (2.12).

To study the interface conditions, consider any( j, n) ∈ 9. Let3P QRSbe the parallel-
ogram depicted in Fig. 2a. Let

J(P Q)
def=
∫

P Q
h∗ · ds,

where (i)dspoints in the direction away from the interior of3P QRSand (ii) the integration
is carried out over a line segment that is in the interior of3P QRSand immediately adjacent
to P Q. We defineJ(QR), J(RS), andJ(SP) similarly. With the aid of Eqs. (2.4) and (2.6),
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it can be shown that

J(P Q) = 1x

2

[
(1+ ν)un

j + (1− ν2− ξ)(u+x )nj
]

(2.14)

J(QR) = 1x

2

[
(1− ν)un

j − (1− ν2− ξ)(u+x )nj
]

(2.15)

J(RS) = −1x

2

[
(1+ ν)un

j − (1− ν2+ ξ)(u+x )nj
]

(2.16)

and

J(SP) = −1x

2

[
(1− ν)un

j + (1− ν2+ ξ)(u+x )nj
]
. (2.17)

Note that Eqs. (2.14)–(2.17) are consistent with Eq. (2.13); i.e.,

J(P Q)+ J(QR)+ J(RS)+ J(SP) = 0. (2.18)

To proceed, let

f (O)1 ( j, n)
def= 2

1x
J(P Q), f (O)2 ( j, n)

def= 2

1x
J(QR) (2.19)

and

f (I)1 ( j, n)
def=− 2

1x
J(RS), f (I)2 ( j, n)

def=− 2

1x
J(SP). (2.20)

In other words, f (O)1 ( j, n) and f (O)2 ( j, n), respectively, are thenormalizedfluxes leav-
ing CE′( j, n) through its “future right” and “future left” edges. Similarly,f (I)1 ( j, n) and
f (I)2 ( j, n), respectively, are thenormalizedfluxesenteringCE′( j, n) through its “past left”
and “past right” edges. For simplicity, a normalized flux will be referred to simply as a flux.
Thus, the two fluxes defined in Eq. (2.19) may be referred to as the outgoing fluxes while
the two fluxes defined in Eq. (2.20) may be referred to as the incoming fluxes. Note that
the interface flux conservation conditions referred to earlier can now be expressed as (see
Fig. 2d): For any( j, n) ∈ 9,

f (I)1 ( j, n)= f (O)1 ( j − 1/2, n− 1/2) and f (I)2 ( j, n)= f (O)2 ( j + 1/2, n− 1/2). (2.21)

Because of the above relations, in Fig. 2d, a single arrow is drawn across an interface to
represent both the flux entering and the flux leaving this interface.

At this juncture, note that, with the aid of Eqs. (2.14)–(2.17), (2.19), and (2.20), Eqs. (2.8)
and (2.9) can also be obtained using Eq. (2.21). In the following, Eq. (2.21) will be used
to construct an alternative scheme in whichf (O)1 ( j, n) and f (O)2 ( j, n) are the independent
marching variables.

To proceed, let

f(O)( j, n)
def=
(

f (O)1 ( j, n)

f (O)2 ( j, n)

)
, f (I)( j, n)

def=
(

f (I)1 ( j, n)

f (I)2 ( j, n)

)
(2.22)
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q( j, n)
def=
(

un
j

(u+x )
n
j

)
(2.23)

3(O) def=
(

1+ ν 1− ν2− ξ
1− ν −(1− ν2− ξ)

)
(2.24)

and

3(I) def=
(

1+ ν −(1− ν2+ ξ)
1− ν 1− ν2+ ξ

)
. (2.25)

Then, with the aid of the above definitions and Eqs. (2.19) and (2.20), Eqs. (2.14)–(2.17)
can be expressed as

f (O)( j, n) = 3(O)q( j, n) (2.26)

and

f (I)( j, n) = 3(I)q( j, n). (2.27)

Note that, as a result of Eq. (2.10), the inverse of3(I) exists; i.e.,

[
3(I)

]−1 = 1

2

(
1 1

− 1− ν
1− ν2+ ξ

1+ ν
1− ν2+ ξ

)
. (2.28)

It follows from Eq. (2.27) that

q( j, n) = [3(I)
]−1

f (I)( j, n). (2.29)

Because the elements of the matrices3(I) and [3(I)]−1 are constant, Eqs. (2.27) and (2.29)
imply that f (I)1 ( j, n) and f (I)2 ( j, n) can be uniquely determined in terms ofun

j and(u+x )
n
j ,

and vice versa.
Substituting Eq. (2.29) into Eq. (2.26), one has

f (O)( j, n) = Äf (I)( j, n). (2.30)

where

Ä
def=3(O)

[
3(I)

]−1
. (2.31)

Equation (2.30) can be rewritten as

f (O)` ( j, n) =
2∑

m=1

ω`m f (I)m ( j, n), ` = 1, 2. (2.32)

Hereω`m, `,m= 1, 2 are the elements of the matrixÄ. By using Eqs. (2.24), (2.28), and
(2.31), one has

ω11 = ν(1− ν2)+ ξ
1− ν2+ ξ , ω12 = (1+ ν)(1− ν2)

1− ν2+ ξ (2.33a)
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and

ω21 = (1− ν)(1− ν2)

1− ν2+ ξ , ω22 = −ν(1− ν
2)+ ξ

1− ν2+ ξ . (2.33b)

A result of Eqs. (2.33a) and (2.33b) is

2∑
`=1

ω`m = 1, m= 1, 2. (2.34)

It follows from Eqs. (2.32) and (2.34) that

f (O)1 ( j, n)+ f (O)2 ( j, n) = f (I)1 ( j, n)+ f (I)2 ( j, n), (2.35)

i.e., the sum of the outgoing fluxes is equal to that of the incoming fluxes. From Eqs. (2.19)
and (2.20), it is easy to see that Eq. (2.35) is equivalent to Eq. (2.18).

Next, by combining Eqs. (2.21) and (2.32), one obtains

f (O)1 ( j, n) = ω11 f (O)1 ( j − 1/2, n− 1/2)+ ω12 f (O)2 ( j + 1/2, n− 1/2) (2.36)

and

f (O)2 ( j, n) = ω21 f (O)1 ( j − 1/2, n− 1/2)+ ω22 f (O)2 ( j + 1/2, n− 1/2). (2.37)

Equations (2.36) and (2.37) form a marching scheme in which the outgoing fluxesf (O)1 ( j, n)
and f (O)2 ( j, n) are evaluated in terms of the outgoing fluxesf (O)1 ( j − 1/2, n− 1/2) and
f (O)2 ( j + 1/2, n− 1/2). This evaluation requires four multiplications and two additions.
However, the operation count is reduced to two multiplications, two additions, and one
subtraction if Eq. (2.37) in the above scheme is replaced by

f (O)2 ( j, n) = f (O)1 ( j − 1/2, n− 1/2)+ f (O)2 ( j + 1/2, n− 1/2)− f (O)1 ( j, n), (2.38)

which is a direct result of Eqs. (2.21) and (2.35). Note that, ignoring additions and sub-
tractions (which can be performed much faster than multiplications), the current operation
count (i.e., two multiplications) is only one third of that (i.e., six multiplications) associated
with the scheme formed by Eqs. (2.8) and (2.9).

Given the above main marching scheme, a complete marching procedure can be defined
using the following information:

(a) For any( j, 0) ∈ 9, the outgoing fluxesf (O)1 ( j, 0) and f (O)2 ( j, 0) can be evaluated
using Eq. (2.26) if the the initial datau0

j and(u+x )
0
j are given.

(b) Let the initial data be periodic; i.e., for any mesh point( j, 0),

f (O)` ( j + K , 0) = f (O)` ( j, 0), ` = 1, 2 (2.39)

whereK is a given integer≥1. Then, for any( j, n) ∈ 9 with n ≥ 0, f (O)` ( j, n) can be
determined in terms of the initial data by using the main marching scheme. Furthermore, by
induction, it can be shown that the solution is periodic; i.e., for any( j, n) ∈ 9 with n ≥ 0,

f (O)` ( j + K , n) = f (O)` ( j, n). (2.40)
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(c) By eliminating(u+x )
n
j from Eqs. (2.14) and (2.17) and then using Eqs. (2.19)–(2.21),

one has

f (O)1 ( j, n) = (1+ ν)un
j +

1− ν2− ξ
1− ν2+ ξ

[
f (O)2 ( j + 1/2, n− 1/2)− (1− ν)un

j

]
(2.41)

Similarly, Eqs. (2.15), (2.16), and (2.19)–(2.21) can be used to show that

f (O)2 ( j, n) = (1− ν)un
j +

1− ν2− ξ
1− ν2+ ξ

[
f (O)1 ( j − 1/2, n− 1/2)− (1+ ν)un

j

]
. (2.42)

According to Eq. (2.41), in the case where the spatial domain is finite and( j, n) is a mesh
point at the left boundary,f (O)1 ( j, n) can be evaluated in terms off (O)2 ( j + 1/2, n− 1/2)
if the value ofun

j is given. On the other hand, according to Eq. (2.42),f (O)2 ( j, n) can be
evaluated in terms off (O)1 ( j − 1/2, n− 1/2) for a right-boundary mesh point( j, n) if the
value ofun

j is given. Thus, one concludes that the marching can proceed through all time
levels if the values ofun

j are specified at all boundary mesh points.
This section concludes with the following remarks:

(a) Thea–µ scheme has the simplest stencil, i.e., a triangle with a vertex at the upper
time level and the other two vertices at the lower time level. Furthermore, the number of
the independent marching variables associated with a mesh point( j, n) ∈ 9 is identical to
the number of the mesh points at the(n− 1/2)th time level that are part of the stencil. Note
that the same relation also holds for many 2D and 3D CE/SE schemes [2–4, 18, 20].

(b) Let ( j, n) be an interior mesh point. According to Eqs. (2.21), (2.22), and (2.29),un
j

and(u+x )
n
j can be determined in terms of the outgoing fluxesf (O)1 ( j − 1/2, n− 1/2) and

f (O)2 ( j + 1/2, n− 1/2).
(c) Let ( j, n) be a mesh point on the right boundary. According to Eqs. (2.16), (2.20),

and (2.21), one has

[
(1+ ν)un

j − (1− ν2− ξ)(u+x )nj
] = f (O)1 ( j − 1/2, n− 1/2). (2.43)

Thus,(u+x )
n
j can be determined in terms of the outgoing fluxf (O)1 ( j − 1/2, n− 1/2) if the

boundary valueun
j is given. Similarly, for a mesh point( j, n) on the left boundary,(u+x )

n
j

can be determined in terms off (O)2 ( j + 1/2, n− 1/2) if un
j is given.

(d) As a preliminary for a discussion of the consistency of thea–µ scheme in Section 3,
note that, by using Eqs. (2.8) and (2.9) repeatedly, one has [1, p. 20]

un+1
j = 1

2

[
ν + ξ(1− ν)

1− ν2+ ξ
][
(1+ ν)un

j−1+ (1− ν2− ξ)(u+x )nj−1

]
+ 1− ν2

1− ν2+ ξ
[
(1− ν2)un

j − ν(1− ν2− ξ)(u+x )nj
]

− 1

2

[
ν − ξ(1+ ν)

1− ν2+ ξ
][
(1− ν)un

j+1− (1− ν2− ξ)(u+x )nj+1

]
(2.44)
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and

(u+x )
n+1
j = −1

2

[
ν + ξ(1− ν)

1− ν2+ ξ
][

1− ν2

1− ν2+ ξ un
j−1+ (1− ν)

1− ν2− ξ
1− ν2+ ξ (u

+
x )

n
j−1

]

+
[

1− ν2

1− ν2+ ξ
]2 [

νun
j + (1− ν2− ξ)(u+x )nj

]− 1

2

[
ν − ξ(1+ ν)

1− ν2+ ξ
]

×
[

1− ν2

1− ν2+ ξ un
j+1− (1+ ν)

1− ν2− ξ
1− ν2+ ξ (u

+
x )

n
j+1

]
. (2.45)

(e) Note that the results presented here are only the special caseb = 0 of those presented
in [1], whereb (a constant) is the speed of the moving mesh considered there. Also, according
to a Fourier error analysis given in Section 5 of [1], for a given1x, the accuracy of thea–µ
scheme (µ > 0) will reach a peak if1t is chosen such that

1− ν2 =
√

3ξ. (2.46)

The potency of this analytical result will be numerically demonstrated in Section 4.2.

2.2. The Inviscid Burgers a–ε–α–β Scheme

Consider the inviscid Burgers equation; i.e.,

∂u

∂t
+ ∂g

∂x
= 0 (g

def= u2/2). (2.47)

The integral conservation form of Eq. (2.47) is Eq. (2.2) with

h = (g, u). (2.48)

In the current scheme, for any(x, t) ∈ SE( j, n), u(x, t), g(x, t), andh(x, t) are approxi-
mated byu∗(x, t; j, n), g∗(x, t; j, n) andh∗(x, t; j, n), respectively. Here (i)u∗(x, t; j, n)
is defined by Eq. (2.3); (ii)

g∗(x, t; j, n) = gn
j + (gx)

n
j (x − xj )+ (gt )

n
j (t − tn) (2.49)

and (iii)

h∗(x, t; j, n) = (g∗(x, t; j, n), u∗(x, t; j, n)). (2.50)

Note that, in Eq. (2.49),

gn
j

def= (un
j

)2
/2, (gx)

n
j

def= un
j (ux)

n
j , and (gt )

n
j

def= un
j (ut )

n
j . (2.51)

Obviously, the above expressions are the numerical analogues of the analytical expressions
g = u2/2, ∂g/∂x = u∂u/∂x, and∂g/∂t = u∂u/∂t , respectively.

Furthermore, letu = u∗(x, t; j, n)andg = g∗(x, t; j, n) satisfy Eq. (2.47) (i.e.,∇ · h∗ =
0) within SE( j, n). As a result,

(ut )
n
j = −(gx)

n
j = −un

j (ux)
n
j . (2.52)
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Thus again,un
j and(ux)

n
j are the only independent marching variables at any( j, n) ∈ 9.

Let ( j, n) denote an interior mesh point. We assume that Eq. (2.7) is valid for both
V = CE+( j, n) andV = CE−( j, n). Then, with the aid of Eqs. (2.3), (2.11), (2.49), and
(2.50), one concludes that

un
j − un−1/2

j±1/2 ∓
1t

1x

(
gn

j − gn−1/2
j±1/2

)
±
{
(u+x )

n
j + (u+x )n−1/2

j±1/2 +
(1t)2

41x

[
(gt )

n
j + (gt )

n−1/2
j±1/2

]}
= 0. (2.53)

By summing over the above two expressions and using Eqs. (2.51) and (2.52), one has

un
j =

1

2

[
un−1/2

j−1/2 + un−1/2
j+1/2 + sn−1/2

j−1/2 − sn−1/2
j+1/2

]
. (2.54)

Here, for any( j, n) ∈ 9,

sn
j

def= [1− (νn
j

)2]
(u+x )

n
j +

1

2
νn

j un
j (2.55)

with νn
j

def= (un
j1t)/1x. Moreover, by substituting Eq. (2.54) into any one of the two ex-

pressions in Eq. (2.53) and assuming 1− (νn
j )

2 6= 0, it can be shown that

(u+x )
n
j =

(
ua+

x

)n

j
def= un−1/2

j+1/2 − un−1/2
j−1/2 − sn−1/2

j+1/2 − sn−1/2
j−1/2 + νn

j un
j

2
[
1− (νn

j

)2] . (2.56)

At this juncture, note that Eq. (2.54) can be obtained directly from the assumption that
Eq. (2.7) is valid forV = CE( j, n)where CE( j, n) is the union of CE+( j, n) and CE−( j, n)
(see Fig. 1e). As explained in [2], the last assumption follows directly from the assumptions
that Eq. (2.7) is valid forV = CE±( j, n).

The scheme formed by Eqs. (2.54) and (2.56) is referred to as the inviscid Burgersa
scheme. It is a nonlinear extension of the nondissipativea scheme (i.e., the inviscid version
of thea–µ scheme). Such an extension generally is unstable; it must be modified to become
a stable scheme. Note that the superscript symbol “a” in (ua+

x )nj is introduced to remind the
reader that Eq. (2.56) is valid for the inviscid Burgersa scheme only.

For the modified scheme, we impose a less stringent conservation condition, i.e., for
each( j, n) ∈ 9, the modified scheme satisfies Eq. (2.7) withV = CE( j, n). Because this
condition is equivalent to Eq. (2.54), the latter equation is also part of the modified scheme.

To proceed further, consider any( j, n) ∈ 9. Then,( j ± 1/2, n− 1/2) ∈ 9. Let

u′ nj±1/2
def= [u+ (1t/2)ut ]

n−1/2
j±1/2 . (2.57)

To simplify notation, in the above and hereafter we adopt a convention that can be explained
using the expression on the right side of Eq. (2.57) as an example; i.e.,

[u+ (1t/2)ut ]
n−1/2
j±1/2 = un−1/2

j±1/2 + (1t/2)(ut )
n−1/2
j±1/2.

With the aid of Eq. (2.52) andνn
j

def= (un
j1t)/1x, Eq. (2.57) implies that

u′ nj±1/2 = [u− 2νu+x ]n−1/2
j±1/2. (2.58)



THE 1D CE/SE METHOD 201

Note that, by definition,( j ± 1/2, n) /∈ 9 if ( j, n) ∈ 9. Thus,u′ nj±1/2 is not associated with
a mesh point∈ 9.

According to Eq. (2.57),u′ nj±1/2 can be interpreted as a first-order Taylor’s approximation
of u at ( j ± 1/2, n). Thus,

(
uc+

x

)n

j
def= u′ nj+1/2− u′ nj−1/2

4
= 1x

4

(
u′ nj+1/2− u′ nj−1/2

1x

)
(2.59)

is a central-difference approximation of∂u/∂x at ( j, n), normalized by the same factor
1x/4 that appears in Eq. (2.11). Note that the superscript “c” is used to remind the reader
of the central-difference nature of the term(uc+

x )
n
j .

Furthermore, let

(
uc+

x±
)n

j
def= ±1

2

(
u′ nj±1/2− un

j

) = ±1x

4

(
u′ nj±1/2− un

j

1x/2

)
. (2.60)

By their definitions,(uc+
x+)

n
j and(uc+

x−)
n
j are two normalized numerical analogues of∂u/∂x

at( j, n), with one being evaluated from the right and another from the left. It can be shown
that

(
uc+

x

)n

j =
1

2

[(
uc+

x+
)n

j +
(
uc+

x−
)n

j

]; (2.61)

i.e.,(uc+
x )

n
j is the simple average of(uc+

x+)
n
j and(uc+

x−)
n
j . Next, let the functionWo be defined

by (i) Wo(0, 0;α) = 0 and (ii)

Wo(x−, x+;α) = |x+|
αx− + |x−|αx+
|x+|α + |x−|α (|x+| + |x−|> 0), (2.62)

wherex+, x− andα ≥ 0 are real variables. Note that (i) to avoid dividing by zero, in practice
a small positive number such as 10−60 is added to the denominator in Eq. (2.62); and (ii)
Wo(x−, x+;α), a nonlinear weighted average ofx− andx+, becomes their simple average
if α = 0 or |x−| = |x+|. Furthermore, let(

uw+x

)n

j
def= Wo

((
uc+

x+
)n

j ,
(
uc+

x−
)n

j ;α
)
. (2.63)

Note that the superscript “w” is used to remind the reader of the weighted-average nature
of the term(uw+x )nj . With the aid of the above definitions, the modified scheme, referred to
as the inviscid Burgersa–ε–α–β scheme, is formed by Eq. (2.54) and

(u+x )
n
j =

(
ua+

x

)n

j + 2ε
(
uc+

x − ua+
x

)n

j ++3
(
uw+x − uc+

x

)n

j . (2.64)

Here (i)ε ≥ 0 andβ ≥ 0 are adjustable parameters; and (ii)(uw+x )nj is implicitly dependent
on the adjustable parameterα.

The expression on the right side of Eq. (2.64) contains three parts. The first part is a
nondissipative term(ua+

x )nj . The second part is the product of 2ε and the difference between
the central-difference term(uc+

x )
n
j and the nondissipative term(ua+

x )nj . The third part is
the product ofβ and the difference between a weighted average of(uc+

x+)
n
j and(uc+

x−)
n
j and

their simple average (see Eq. (2.61)). Numerical dissipation ofε-type, i.e., that results from
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adding the second part to the right side of Eq. (2.64), generally is effective in damping
out numerical instabilities that arise from the smooth region of a solution. However, it is
less effective in suppressing numerical wiggles that often occur near a discontinuity. On
the other hand, numerical dissipation ofα–β-type, i.e., that results from adding the third
part, is very effective in suppressing numerical wiggles. Moreover, because the condition
|(uc+

x+)
n
j | = |(uc+

x−)
n
j | more or less prevails and thus the weighted average is nearly equal to

the simple average (see comment (ii) given immediately following Eq. (2.62)) in the smooth
region of the the solution, numerical dissipation introduced by the third part has very slight
effect in the smooth region.

This section is concluded with the following comments:

(a) According to numerical evidence, stability of the current solver generally requires
that (i) 0≤ ε ≤ 1, (ii) β ≥ 0, (iii) α ≥ 0, and (iv)|νn

j | ≤ 1 for all ( j, n) ∈ 9.
(b) Let ε = 1/2 andβ = 1. Then the current scheme is formed by Eq. (2.54) and

(u+x )
n
j =

(
uw+x

)n

j . (2.65)

For this special case, one does not need to evaluate(ua+
x )nj and thus the condition that

1− (νn
j )

2 6= 0 can be ignored (see Eq. (2.56)). Moreover, the value ofα is the only adjustable
parameter allowed in the reduced scheme. Generally, with a choice ofα = 1 orα = 2, the
numerical dissipation introduced is sufficient to suppress numerical wiggles. Because it is
totally explicit and has the simplest stencil, the reduced scheme is also highly compatible
with parallel computing. Furthermore, it will be shown in Section 3 that the scheme can
accurately capture shocks and contact discontinuities with high resolution and no numerical
oscillations.

(c) For other remarks on the parametersε, α, andβ, the reader is referred to Section 5.5
in Ref. [3].

3. CONSISTENCY AND TRUNCATION ERROR

In this section, the consistency and the truncation error of the scheme formed by Eqs. (2.44)
and (2.45), i.e., the circumstances under which an analytical solution may “satisfy” the above
two discrete equations, will be investigated. As a preliminary to this investigation and to
provide a basis for analyzing the numerical results given in Section 4, this section will begin
with a discussion of several critical concepts.

First note that, in a typical numerical scheme, a physical variable is associated with a
single numerical variable. Thus, a system of two coupled physical equations involving two
independent physical variables generally is modeled by a system of two coupled discrete
equations involving two independent numerical variables. Also, one would expect that the
two coupled discrete equations are consistent with the two coupled physical equations.
Thus, in general, one would not expect that two coupled discrete equations be consistent
with only a single PDE.

The scheme formed by Eqs. (2.44) and (2.45) is nontraditional in one key respect. Even
though it is introduced to model a single PDE (i.e., Eq. (2.1)) with a single dependent variable
u, it is formed by two coupled discrete equations involving twoindependentnumerical
variablesun

j and(ux)
n
j .

The numerical variablesun
j and(ux)

n
j could be “interpreted” as the numerical analogues

of u and∂u/∂x, respectively. However, it should be understood that this interpretation is
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FIG. 3. A computational domain withd ≥ x ≥ 0 andt ≥ 0 (x = j1x, t = n1t).

not exact in nature and that certainly it does not invalidate the fact thatun
j and(ux)

n
j are

independent numerical variables. As a result, one would expect that Eqs. (2.44) and (2.45)
be consistent with a system of two PDEs, with one of them being Eq. (2.1).

Next we will discuss a general limitation on the ability of an explicit scheme to solve
an initial-value/boundary-value problem accurately. As an example, consider Eq. (2.1)
(µ > 0) over a domain withd ≥ x ≥ 0 and andt ≥ 0 (see Fig. 3). Let the initial data
u(x, 0) (d ≥ x ≥ 0) and the boundary datau(0, t) andu(d, t) (t > 0) be given. Letx0 and
t0 be the coordinates of a fixed pointP0. Letu(P0) andu(P0), respectively, denote the values
of analytical and discrete solutions atP0. Since a characteristic of Eq. (2.1) is represented
by t = constant, the domain of dependence ofu(P0) is the union ofAB, BC, andC D. In
other words,u(P0) is dependent on all the initial data, and the boundary data witht ≤ t0.
Assuming that the discrete solution is generated by an explicit solver, then the domain of
dependence ofu(P0), contrarily, will include only a subset of the mesh points located on
AB, BC, andC D. As an example, consider an explicit scheme with the marching variables
at the mesh point( j, n+ 1) being determined by those at the mesh points at( j, n) and
( j ± 1, n). As a result, the domain of dependence ofu(P0) includes only the mesh points
on E B, BC, andC F. (Note: Here, a line segment includes its end points.) Because (i) the
mesh points that lie onABbut notE Band those that lie onC D but notC F do not belong to
the domain of dependence ofu(P0), and (ii) the lengths ofAE andF D are proportional to
the ratio1t/1x if the values ofx0 andt0 remain fixed as1t,1x→ 0, one may conclude
that, as1t,1x→ 0, thediscretesolution (considered a function of1t and1x) cannot
converge to its analytical counterpart unless1t/1x→ 0. It follows from Lax’s equivalence
theorem [22, p. 45] that, for an explicit solver of Eq. (2.1) withµ > 0, the condition that
1t/1x→ 0 as1t,1x→ 0 must be required by consistency or stability or both. As an
example, for the MacCormack scheme (see Section 4), the last condition is required by the
necessary stability conditionµ1t/(1x)2 ≤ 0.75 (see Fig. 4). On the other hand, for the
a–µ scheme (as will be shown shortly), it is required by consistency. Note that the stability
of thea–µ scheme [1, 2] is limited only by the condition|ν| ≤ 1, which does not require
that1t → 0 as1t,1x→ 0.
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FIG. 4. Stability region (shaded area) of the MacCormack scheme on theξ–ν plane.

Also note that, for a problem with an unbounded domain and a periodic initial condition,
a discussion similar to that given above is given in [1, p. 55].

Furthermore, as a result of above considerations, and the fact that the analytical domain
of dependence can be matched by the domain of dependence of an implicit scheme, one
concludes that, for an initial-value/boundary-value problem, an explicit solver is generally
not as accurate as an implicit solver. Generally, an explicit solver should not be used to solve
such a problem except for the special circumstance in which errors caused by neglecting
certain initial/boundary data are relatively small. The factors that help achieve the above
special circumstance include: (i) a small value of1t/1x, (ii) a small time rate of change
of boundary data, and (iii) a small contribution of the diffusion terms relative to that of the
convection terms.

On the other hand, for a pure initial-value problem, such as a problem involving Eq. (2.1)
with µ = 0, an implicit solver generally is not as accurate as an explicit solver. This is
because the domain of dependence of the former solver may be far greater than the analytical
domain of dependence and, as a result, an implicit solution tends to be contaminated by
extraneous information.

For simplicity, the consistency of the finite discrete equations, Eqs. (2.44) and (2.45), will
be investigated fully here only for the special case witha = 0 andµ > 0. For the general
case, the reader is referred to Section 6 in [1].

Because (i)ν = 0 if a = 0; and (ii) (u+x )
n
j = (1x/4)(ux)

n
j , for the special case under

consideration, Eqs. (2.44) and (2.45) reduce to

un+1
j − un

j

1t
− µ

{
2

1+ ξ ·
un

j+1+ un
j−1− 2un

j

(1x)2
+ ξ − 1

ξ + 1
· (ux)

n
j+1− (ux)

n
j−1

21x

}
= 0 (3.1)

and

(ux)
n+1
j − (ux)

n
j

1t
− µ

{
2(ξ − 1)

(ξ + 1)2
· (ux)

n
j+1+ (ux)

n
j−1− 2(ux)

n
j

(1x)2

+ 8

(ξ + 1)2
· u

n
j+1− un

j−1− 21x(ux)
n
j

(1x)3

}
= 0, (3.2)

respectively. Letq1(x, t) andq2(x, t) be two smooth functions ofx andt . If un
j = q1(xj , tn)
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and(ux)
n
j = q2(xj , tn) form a solution to Eqs. (3.1) and (3.2), then with the aid of Taylor’s

formula with reminder, one has[
∂q1

∂t
− µ∂

2q1

∂x2

]
− µξ − 1

ξ + 1

∂

∂x

(
q2− ∂q1

∂x

)
+ O(1t, (1x)2) = 0 (3.3)

and [
q2− ∂q1

∂x

]
+ (1x)2− 4µ1t

8

∂2q2

∂x2
− (1x)2

6

∂3q1

∂x3

+ 1

16µ

(
4µ1t

1x
+1x

)2(
∂q2

∂t
+ O(1t, (1x)2)

)
= 0. (3.4)

Note that, to emphasize the fact thatun
j and(ux)

n
j are two independent marching variables,

here new symbolsq1 andq2 are introduced to denote the functions that are the analytical
counterparts ofun

j and(ux)
n
j , respectively. Also, it should be understood that in Eqs. (3.3)

and (3.4),q1 andq2 and their derivatives represent the values at the mesh point( j, n).
Equations (3.1) and (3.2) can be considered the numerical approximations to the PDEs

∂q1

∂t
− µ∂

2q1

∂x2
= 0 and q2− ∂q1

∂x
= 0, (3.5)

respectively. According to Eqs. (3.3) and (3.4), the truncation errors of these approximations
are the terms after the brackets in Eqs. (3.3) and (3.4). Letq1 andq2 uniformly satisfy the
PDEs given in Eq. (3.5). Then obviously the first term after the brackets in Eq. (3.3) vanishes.
As a result, it is easy to see that the truncation errors that appear in Eqs. (3.3) and (3.4)→
0 in the limit of1t,1x→ 0 if the mesh is refined in such a manner that1t/1x→ 0
as1t,1x→ 0. In other words, assuming the above rule of mesh refinement, Eqs. (3.1)
and (3.2) are consistent with the system of the PDEs given in Eq. (3.5). Moreover, one
can conclude that the above truncation errors are second order in1x if the rule of mesh
refinement is such thatξ remains bounded as1x→ 0 and1t → 0.

For the more general case in whicha 6= 0 andµ > 0, it is shown in Section 6 of [1] that
Eqs. (2.44) and (2.45) are consistent with the system of the PDEs

∂q1

∂t
+ a

∂q1

∂x
− µ∂

2q1

∂x2
= 0 and q2− ∂q1

∂x
= 0. (3.6)

Also the truncation errors→ 0 in the limit of1t,1x→ 0, assuming the mesh is refined
in such a manner that1t/1x→ 0 as1t,1x→ 0

Note that Eq. (2.1) reduces to

∂u

∂t
+ a

∂u

∂x
= 0 (3.7)

whenµ = 0. For this special case, it is shown in Section 6 of [1] that Eqs. (2.44) and (2.45)
are consistent with the system of the PDEs

∂q1

∂t
+ a

∂q1

∂x
= 0 (3.8)
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and

∂

∂t

(
q2− ∂q1

∂x

)
− a

∂

∂x

(
q2− ∂q1

∂x

)
+ ∂

∂x

(
∂q1

∂t
+ a

∂q1

∂x

)
= 0. (3.9)

Because, in this case, the truncation errors are all second order in1x and1t , consistency
does not require that the mesh be refined in such a manner that1t/1x→ 0 as1t,1x→ 0.
Obviously, this conclusion is consistent with the fact that Eq. (3.7) is associated with a pure
initial-value problem.

Finally, note that the consistency and truncation error of thea–ε scheme are discussed
in Section 7 of [8].

4. NUMERICAL EVALUATION

The accuracy of the numerical schemes described in Section 2 is evaluated here by
comparing their numerical results with the exact solutions and the results generated by
other traditional schemes.

4.1. The a Scheme

Thea scheme is the special case of thea–µ scheme withµ = 0. It is the only two-level,
explicit, and nondissipative solver of Eq. (3.7) known to the authors. As a matter of fact,
it is shown in [2] that the two amplification factors of thea scheme are identical to those
of the “decoupled” Leapfrog scheme. Note that the ordinary three-level Leapfrog scheme
[23, p. 100] is formed by two completely decoupled schemes. Because these two decoupled
schemes are identical in structure, any one of them is referred to as the decoupled Leapfrog
scheme. Using the mesh depicted in Fig. 1a, the decoupled scheme can be expressed as (see
Eq. (A.9) in [1])

un
j = un−1

j + ν
(

un−1/2
j−1/2 − un−1/2

j+1/2

)
. (4.1)

Obviously, like thea scheme, the mesh points associated with the decoupled Leapfrog
scheme also are staggered in space–time. However, unlike the two-levela scheme, the
three-level scheme Eq. (4.1) needs to be supplemented by a two-level starting scheme. In
this paper, the starting scheme used is

u1/2
j − u0

j

1t/2
+ a

u0
j+1/2− u0

j−1/2

1x
= 0 (4.2)

In the following, the accuracy and the operation count of thea scheme will be compared
against those of the decoupled Leapfrog scheme and the Lax–Wendroff scheme. Note that the
three schemes under comparison (excluding the starting scheme Eq. (4.2)) are all second-
order accurate in space and time. Using the mesh depicted in Fig. 5, the Lax–Wendroff
scheme can be expressed as

un+1
j = ν ′(ν ′ + 1)

2
un

j−1+ (1− ν ′ 2)un
j +

ν ′(ν ′ − 1)

2
un

j−1, ν ′ def= a1t ′

1x′
. (4.3)

In Fig. 5, for a reason which will become clear shortly, the spatial mesh interval and the
time-step size are denoted by the new symbols1x′ and1t ′, respectively.
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FIG. 5. A regular space–time mesh.

Consider a model problem involving Eq. (3.7). Let (i)a = 0.5 and (ii)

u(x, 0) = sin(πx), −∞ < x <∞ (4.4)

Then the exact solution is

u(x, t) = sin(π(x − 0.5t)), −∞ < x <∞; t ≥ 0. (4.5)

Obviously, the exact solution represents a wave motion with the wavelengthλ = 2 and the
periodT = 4. Thus, one may limit the computational domain to−1≤ x ≤ 1 andt ≥ 0 and
use the periodic boundary condition. Furthermore, it will be assumed thatu0

j = u(xj , 0)
and(ux)

0
j = ∂u

∂x (xj , 0).
Let (i) 1x = 0.04 and1t = 10/131 (i.e.,ν = 125/131= 0.954) for thea scheme

and the decoupled Leapfrog scheme; and (ii)1x′ = 0.02 and1t ′ = 5/131 (i.e.,ν ′ =
125/131= 0.954) for the Lax–Wendroff scheme. Let

εn
j

def= un
j − u(xj , t

n). (4.6)

Given the above definitions, the error distributions for the above three schemes att = 10=
2.5T are depicted in Fig. 6a. Note that totally there are (i) 51 data points for thea scheme
and also for the Leapfrog scheme and (ii) 101 data points for the Lax–Wendroff scheme.
From the results shown, one concludes that the errors of thea scheme and the Lax–Wendroff
scheme vary smoothly in thex-direction and they almost fall on each other at all spatial
locations where the mesh points of these two schemes coincide. On the other hand, the
errors of the decoupled Leapfrog scheme fluctuate rather erratically from one mesh point
to another neighboring mesh point. Even though the mean value of|εn

j | at t = 10 for the
decoupled Leapfrog scheme is only about 8% higher than those for thea scheme and the
Lax–Wendroff scheme, the maximum of|εn

j | for the first scheme is more than twice those
for the last two schemes.

Assuming the same values of1x,1t ,1x′, and1t ′, the error distributions for the above
three schemes att = 100 are depicted in Fig. 6b. At this time, the erratic behavior of the
errors of the decoupled Leapfrog scheme is much less pronounced and, as a result, the errors
of all three schemes are more or less identical at all spatial locations where the mesh points
of these schemes coincide. It appears that the erratic behavior of the errors of the decoupled
Leapfrog scheme at the earlier time is due to the errors introduced by the starting scheme
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(which has only first-order accuracy in time). Because, as time increases, these initial errors
will eventually become negligible compared with other numerical errors accumulated over
time, the total errors will behave in a less erratic manner as time increases.

It has been shown that, assuming1x′ = 1x/2 and1t ′ = 1t/2, thea scheme and the
Lax–Wendroff scheme have almost identical accuracy. Furthermore, assuming that the same
values of1x and1t are used, thea scheme and the decoupled Leapfrog scheme, on the
average, have more or less identical accuracy, albeit the latter scheme may have much
higher maximal local error whent is small. In the following, the above three schemes will
be further judged on the basis of their operation counts.

According to Eq. (4.1) and the comments made following Eq. (2.38), for the decoupled
Leapfrog scheme and thea scheme, at each time level these schemes require, respectively,
oneandtwo multiplications per mesh point to advance the numerical solution by the time
interval1t/2 (i.e., to advance by a single marching step). On the other hand, according
to Eq. (4.3) and Fig. 5, for the Lax–Wendroff scheme, at each time level it takesthree
multiplications per mesh point to advance by the time interval1t ′ (i.e., to advance by a single
marching step in the Lax–Wendroff scheme). Here, it is again assumed that (i) additions
and subtractions, which can be performed much faster than multiplications, are ignored in
operation counts; and (ii) the three combination coefficients on the right side of Eq. (4.3)
are to be evaluated once and stored for repeated later calculations. Because the numerical
results shown in Fig. 6 are generated assuming (i)1t ′ = 1t/2 and (ii)1x′ = 1x/2 (i.e.,
the number of mesh points per time level used in the Lax–Wendroff scheme is twice that
used in thea scheme and the decoupled Leapfrog scheme), one concludes that the Lax–
Wendroff scheme can achieve the same accuracy as that of thea scheme only at the expense
of an operation count that is three times that of the latter scheme.

The section is concluded with the following comments:

(a) A solution of the ordinary Leapfrog scheme is formed by two completely decoupled
solutions. As time increases, these solutions will gradually deviate from the correct solution
and, because of their decoupled nature, from each other. Thus, one of these two solutions is
completely redundant. For this reason, using the ordinary Leapfrog scheme instead of the

FIG. 6. The error distributions of thea scheme, the decoupled Leapfrog scheme, and the Lax–Wendroff
scheme(1x = 0.04,1t = 10/131,1x′ = 0.02, and1t ′ = 5/131).
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decoupled Leapfrog scheme is pointless, i.e., it simply doubles computer cost without any
gain in accuracy. The same observation is also applicable to other schemes that have the
same decoupled nature (e.g., the DuFort–Frankel scheme and the Lax scheme).

(b) Even though thea scheme and the decoupled Leapfrog scheme have the same ampli-
fication factors, the former scheme has more compact stencil than the latter scheme. As it
turns out, this compactness and the fact that the mesh values of both the dependent variable
and its spatial derivative are carried at each mesh point make it much easier to construct
robust and accurate generalizations of thea scheme.

4.2. Theµ Scheme

Theµ scheme is the special case of thea–µ scheme witha = 0. It is shown in [1] that
the two-amplification factors of theµ scheme are identical to those of the “decoupled”
DuFort–Frankel scheme. Using the mesh depicted in Fig. 1a, the decoupled scheme can be
expressed as (see Eq. (A.9) in [2])

un
j =

1− ξ
1+ ξ un−1

j + ξ

1+ ξ
(
un−1/2

j−1/2 + un−1/2
j+1/2

)
. (4.7)

Obviously, like theµ scheme, the mesh points associated with the decoupled DuFort–
Frankel scheme also are staggered in space–time. However, unlike the two-levelµ scheme,
the three-level scheme Eq. (4.7) needs to be supplemented by a two-level starting scheme.
In this paper, for theinterior mesh points( j, 1/2), the starting scheme used is

u1/2
j − u0

j

1t/2
= µu0

j+1/2+ u0
j−1/2− 2u0

j

(1x/2)2
= 0. (4.8)

In the following, the accuracy and the operation count of theµ scheme will be compared
against those of the decoupled DuFort–Frankel scheme and the forward-time central-space
(FTCS) scheme. Using the mesh depicted in Fig. 5, the FTCS scheme can be expressed as

un
j = un−1

j + α′(un−1
j+1 + un−1

j−1 − 2un−1
j

)
(α′ def= µ1t ′/(1x′)2). (4.9)

Consider a model problem [24] that is defined by (i) the PDE

∂u

∂t
− µ∂

2u

∂x2
= 0, (4.10)

whereµ = 2.17× 10−4; (ii) the initial condition (t = 0)

u =
{

40 if x = 0;
0 if 0 < x ≤ 0.04; (4.11)

and the boundary condition (t > 0)

u =
{

40 if x = 0;
0 if x = 0.04.

(4.12)

Note that the exact solution of this problem is given in [24]. Also note that, as a result of
the above definitions, (i) the computational domain is limited to 0≤ x ≤ 0.04 andt ≥ 0;



210 CHANG, WANG, AND TO

and (ii) it is assumed thatun
j = 40 if ( j, n) is on the left boundary (x = 0) andun

j = 0 if
( j, n) is on the right boundary (x = 0.04). Moreover, the reader is reminded that, for theµ

scheme,(ux)
n
j at any boundary mesh point( j, n) is a marching variable to be evaluated.

In the numerical simulation involving theµ scheme and the decoupled DuFort–Frankel
scheme, again the staggered mesh depicted in Fig. 1a is used. Let (i)xj = j1x andtn =
n1t ; and (ii)1x and an integerJ be chosen such thatxJ = 0.04. Furthermore, it is assumed
that: (i) forn = 0, 1, 2, . . . , ( j, n) ∈ 9 if and only if j = 1/2, 3/2, . . . , (J − 1/2); and (ii)
for n = 1/2, 3/2, . . . , ( j, n) ∈ 9 if and only if j = 0, 1, 2, . . . , J. As a result, the origin
(0, 0) /∈ 9. Thus, one can safely assumeu0

j = (ux)
0
j = 0 for j = 1/2, 1, 3/2, 2, . . . , (J −

1/2). Note that: (i) to apply the starting scheme Eq. (4.8),u0
j must be specified atj =

1/2, 1, 3/2, 2, . . . , (J − 1/2), not only at those values ofj with ( j, 0) ∈ 9; and (ii) because
the initial value has a spurious jump at the origin, the fact that one does not need to specify
initial value there generally results in more accurate numerical results.

On the other hand, the regular mesh depicted in Fig. 5 is used in the numerical simulation
involving the FTCS scheme. In this case, it is assumed thatxj = j1x′, tn = n1t ′ and
xJ ′ = 0.04 with J ′ being an integer. According to Fig. 5 and Eq. (4.9), in the case of the
FTCS scheme, the origin must be a mesh point. Thus, the numerical initial conditions are
defined byu0

0 = 40 andu0
j = 0, j = 1, 2, . . . , J ′.

Let1x = 1t = 0.001 and1x′ = 1t ′ = 0.0005. Then the error distributions of the above
three schemes att = 0.18 are those depicted in Fig. 7a. On the other hand, the distributions
at t = 1.08 are those depicted in Fig. 7b. It is seen that, for botht = 0.18 andt = 1.08, the
errors of theµ scheme and the decoupled DuFort–Frankel scheme are almost identical at
all mesh points, and they are smaller than those of the FTCS scheme at most mesh points.
Note that for the current dissipative case,εn

j decays withun
j as time increases.

Note that for the FTCS scheme (see Eq. (4.9)), it requires one multiplication per mesh
point to advance by the time interval1t ′ (i.e., to advance by one marching step). On the
other hand, for the decoupled DuFort–Frankel scheme and theµ scheme (see Eq. (4.7) and
the comments made following Eq. (2.38)), it requires two multiplications per mesh point
to advance by the time interval1t/2 (i.e., to advance by one marching step). Because (i)

FIG. 7. The error distributions of theµ scheme, the decoupled DuFort–Frankel scheme, and the FTCS scheme
(1x = 1t = 0.001, and1x′ = 1t ′ = 0.0005).
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1t ′ = 1t/2 and (ii)1x′ = 1x/2 (i.e., the number of mesh points per time level used in
the FTCS scheme is twice that used in theµ scheme and the decoupled DuFort–Frankel
scheme), one concludes that the results shown in each of Figs. 7a and 7b are obtained with
approximately the same operation count for each of the three schemes considered.

This section is ended with a numerical evaluation of an analytical prediction given earlier,
i.e., for a given1x, the accuracy of thea–µ scheme will reach a peak if1t are chosen
such that Eq. (2.46) is satisfied. Obviously, for the current casea = 0, Eq. (2.46) reduces
to ξ = 1/

√
3. With the aid of Eq. (2.11), the last expression implies that

1t = 1t0
def= (1x)2

4
√

3µ
(a = 0). (4.13)

Note that, in [1], the same Fourier error analysis from which Eq. (2.46) was derived
also was used to study the Leapfrog/DuFort–Frankel scheme—a scheme which reduces to
the ordinary Leapfrog scheme whenµ = 0 and to the ordinary DuFort–Frankel scheme
whena = 0. By accounting for the fact that a regular mesh was used in that study and
for the differences in notations (such as the fact that1x and1t used in the study of the
Leapfrog/DuFort–Frankel scheme correspond to1x/2 and1t/2 in this paper), one may
infer from Eq. (5.68) of [1] that the accuracy of the decoupled DuFort–Frankel scheme also
will reach a peak if1t = 1t0.

Let (i) 1x = 0.004, (ii) µ = 2.17× 10−4 and (iii) 1t = 1t0
.= 0.0106424. Then the

error distributions of theµ scheme and the decoupled DuFort–Frankel scheme att =
171t0

.= 0.1809 are those depicted in Fig. 8a. On the other hand, the distributions at
t = 1011t0

.= 1.0749 are those depicted in Fig. 8b. It is seen that the error distributions of the
above two schemes again are almost identical at all mesh points. Furthermore, a comparison
of the results shown in Figs. 7a–8b implies that, by choosing1t = 1t0, it is possible to im-
prove the accuracy of theµ scheme and the decoupled DuFort–Frankel scheme while simul-
taneously using much bigger1x and1t . This “strange” phenomenon can be explained by a
fact established by numerical experiments (i.e., with1t and1x being related by Eq. (4.13)),
the above two schemes effectively achieve an accuracy which is fourth order in1x.

FIG. 8. The error distributions of theµ scheme and the decoupled DuFort–Frankel scheme(1x = 0.004,
1t = 1t0 ≈ 0.0106424).



212 CHANG, WANG, AND TO

At this junction, note that, according to a discussion given in Section 3, for an initial-
value/boundary-value problem, an explicit solver is generally not as accurate as an implicit
solver. As a result, two implicit schemes for solving Eq. (2.1) have been constructed using
the CE/SE method [9, 10]. In the inviscid case, both schemes reduce to the current explicit
a scheme. On the other hand, in the pure diffusion case, these two schemes also become
the same scheme and their principal amplification factor is identical to the amplification
factor of the implicit Crank–Nicolson scheme. As a result, in the pure diffusion case, the
Crank–Nicolson scheme and the two CE/SE implicit schemes are of similar accuracy [10].

4.3. The Inviscid Burgers a–ε–α–β Scheme

Consider the hyperbolic problem defined by Eq. (2.47) and the initial condition

u(x, 0) =
{

1 if x < 0;
0 if x > 0.

(4.14)

The weak solution to this problem is [23, p. 142]

u(x, t) =
{

1 if x − t/2< 0;
0 if x − t/2> 0; (4.15)

i.e., the discontinuity propagates in thex-direction with a speed of 1/2.
The above problem is solved by the simplest inviscid Burgersa–ε–α–β scheme (i.e., that

formed by Eqs. (2.54) and (2.65) withα = 1). The computational domain (−2≤ x ≤ 2 and
0≤ t) is covered by a space–time staggered mesh with1x = 0.1. The locations of mesh
points (dots in Fig. 1(a)) are determined by the assumptions: (i)xj = j1x andtn = n1t ,
and (ii) ( j, n) ∈ 9 if and only if j + n is a half-integer. WithJ

def= 2/1x = 20, the initial
conditions used are:

u0
j = u(xj , 0) and (ux)

0
j = 0, (4.16)

where j = −J + 1/2,−J + 3/2, . . . ,−1/2, 1/2, . . . , J − 3/2, J − 1/2. The boundary
conditions used are the simple extrapolation conditions

un
±J = un−1/2

±J∓1/2 and (ux)
n
±J = (ux)

n−1/2
±J∓1/2, (4.17)

wheren = 1/2, 3/2, 5/2, . . ..
The numerical solutions obtained att = 1.8 with 1t = 0.1 (i.e., the maximal Courant

numberνm = 1.0) and1t = 0.06 (i.e.,νm = 0.6) are shown in Fig. 9a. It is seen that the
current very simple shock-capturing scheme can generate nearly perfect solutions. For each
solution shown in Fig. 9a, the shock is resolved almost by a single mesh interval and no
numerical wiggles are detected in its vicinity. Obviously, the best shock resolution occurs
whenνm = 1.0.

The numerical solutions obtained att = 4.2 with1t = 0.1 and1t = 0.06 are shown in
Fig. 9b. At this time, the shock is located atx = 2.1; i.e., it has just exited the computational
domain. Thus, the exact solution isu = 1 within this domain. The maximum magnitude
of the errors in the numerically computed values ofu is less than 10−4 (10−3) in the
case1t = 0.1 (1t = 0.06). Thus, one concludes that the simple extrapolation conditions
Eq. (4.17) are excellent nonreflecting boundary conditions if they are applied in conjunction
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FIG. 9. Comparisons of the CE/SE solutions of the inviscid Burgers equation with the exact solution.

with the CE/SE method. This conclusion is also consistent with the theoretical results
presented in [11].

At this juncture, note that, for each( j, 0) ∈ 9, the line segment joining the two space–
time points(xj ±1x/2; 0) is part of SE( j, 0). As a result, the space–time flux passing
through the above line segment can be evaluated using either the exact or the numerical
initial condition. The resulting two values are identical if and only if

∫ xj+1x/2

xj−1x/2
u∗(x, 0; j, 0) dx =

∫ xj+1x/2

xj−1x/2
u(x, 0) dx. (4.18)

Because of its flux-based nature, accuracy of the CE/SE method generally will suffer
(particularly if the exact initial condition is not continuous) if the numerical initial condition
specified does not satisfy Eq. (4.18). Obviously, the numerical initial condition used here
does satisfy Eq. (4.18). Note that, in case( j, 0) ∈ 9 for j = 0,±1,±2, . . . ,±J, Eq. (4.18)
is satisfied by the initial condition: (i)u0

j = u(xj , 0) and(ux)
0
j = 0 if j 6= 0; and (ii)u0

0 =
1/2 and(ux)

0
0 = c wherec is an arbitrary constant.

5. CONCLUSIONS

Many important topics left untreated in [2], such as the consistency, accuracy, and opera-
tion count of thea–µ scheme, were discussed in this paper. As part of these discussions, an
equivalent yet numerically more efficient and physically more appealing form of thea–µ
scheme was introduced. The key conclusions of the discussions include the following:

(a) It is shown that thea–µ scheme is consistent with a system of two PDEs involving
two dependent variables, with one of the PDEs being Eq. (2.1). This result corresponds
closely to the fact that, for each( j, n) ∈ 9, thea–µ scheme is formed by two equations
involving two independentunknownsun

j and(ux)
n
j .

(b) It is shown that as1t,1x→ 0, a discrete solution of anexplicit solver of the
convection–diffusion equation Eq. (2.1) withµ > 0 cannot converge to its analytical
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counterpart unless the mesh is refined in such a manner that1t/1x→ 0 as1t,1x→ 0.
As a result, Lax’s equivalence theorem implies that, for such a solver, convergence requires
that the above rule of mesh refinement be imposed through consistency or stability or both.
For many explicit schemes, such as the MacCormack scheme, the above rule of mesh re-
finement is imposed through a stability condition. On the other hand, for thea–µ scheme,
it is imposed as a requirement of consistency.

(c) It is shown that, in spite of the fact that both schemes are second order in accuracy,
thea scheme (i.e., thea–µ scheme withµ = 0) may achieve the same accuracy as that of
the Lax–Wendroff scheme with an operation count being only one-third of that of the latter
scheme.

(d) Excluding its two-level starting scheme, the ordinary three-level Leapfrog scheme
is formed by two completely identical and decoupled subschemes. Any one of these sub-
schemes is referred to as the decoupled Leapfrog scheme. The amplification factors of the
decoupled Leapfrog scheme are identical to those of thea scheme. However, the actual ac-
curacy of the former scheme is degraded by the first-order errors introduced by its starting
scheme. As a result, the decoupled Leapfrog scheme is less accurate than thea scheme, a
fact that is most prominent in the earlier time during which the errors of the former scheme
fluctuate erratically from one mesh point to another.

(e) As in the case of the Leapfrog scheme, any one of the two completely identical and
decoupled subschemes that form the ordinary three-level DuFort–Frankel scheme is referred
to as the decoupled DuFort–Frankel scheme. The amplification factors of the decoupled
DuFort–Frankel scheme are identical to those of theµ scheme (i.e., thea–µ scheme with
a = 0). Assuming that the same values of1x and1t are used, it is shown that the decoupled
DuFort–Frankel scheme and theµ scheme have (i) the same operation count, and (ii)
almost the same accuracy. Note that because of the effect of the viscosity, the first-order
errors introduced by the starting scheme associated with the DuFort–Frankel scheme rapidly
become negligible compared with other errors accumulated over time.

(f) Assuming that the spatial mesh intervals and time-step sizes are chosen such that
the total operation counts are equal among them, it is shown that the FTCS scheme is less
accurate than theµ scheme and the decoupled DuFort–Frankel scheme.

(g) With 1t and1x being related by Eq. (4.13), both the decoupled DuFort–Frankel
scheme and theµ scheme effectively achieve an accuracy that is fourth-order in1x.

(h) Thea–ε scheme described in [2] was extended to become a family of solvers for the
inviscid Burgers equations. It was shown that (i) the simplest among these solvers is capable
of generating nearly perfect shock solutions for the inviscid Burgers equation; and (ii) the
simple extrapolation conditions Eq. (4.17) are excellent nonreflecting boundary conditions
if they are applied in conjunction with the CE/SE method.
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